621 Technologies Inc.

CAN-to-BT Gateway

Part No:

Reference Manual

CAN-to-BT Gateway

Table of Contents

Intr	oduct	ion		4
	Inno	vative (CAN over Bluetooth LE Gateway with OpenSYDE support	4
	Supp	oorts 2 (CAN Busses	4
	Mor	nitoring	and Producing CAN Messages	4
	Mor	nitoring	j1939 TP (Transport Protocol) Messages	4
	Iden	itifying a	and Flashing OpenSYDE ECUs	5
1.	Hard	dware 1	B0	6
1	.1.	Electric	cal Characteristics	6
1	.2.	Connec	ction	6
1	.3.	Indicat	ion	7
2.	Blue	tooth		8
2	.1.	Specific	cation	8
2	.2.	Advert	ising	8
2	.3.	GATT S	Server	9
	2.3.2	1. De	evice Information Service (DIS)	9
	2.3.2	2. Ho	ardware Configuration and Status Service	9
	2.	3.2.1.	CAN Bus Interface Characteristics:	9
	2.	3.2.2.	Description	12
	2.	3.2.3.	Sensors Characteristics:	13
	2.3.3	3. <i>EC</i>	CU Information Service	14
	2.	3.3.1.	Characteristics:	14
	2.	3.3.2.	Description	17
	2.3.4	4. <i>EC</i>	CU Programming Initialization Service	18
	2.	3.4.1.	Characteristics:	18
	2.	3.4.2.	Description	20
	2.3.5	5. <i>EC</i>	CU Program Flashing Service	21
	2.	3.5.1.	Characteristics:	21

	2.3.5.2.	Description	23
	2.3.6.	ECU Flash Block Info Service	24
	2.3.6.1.	Characteristics:	24
	2.3.6.2.	Description	28
	2.3.7.	CAN Bus Monitor Service	29
	2.3.7.1.	UUID assignment:	29
	2.3.8.	j1939 TP Monitor Service	35
3.	Using the	Gateway	41
	3.1 ECU	Flashing procedure (Gateway software rev. 1A0)	41
4.	Updating	the firmware	42
	4.1 Enter	ring Recovery mode	42
	4.2 Flash	ing procedure	43
	4.2.1	Using AuTerm	43
	4.2.2	Using mcumgr-client (Windows)	47

Introduction

Innovative CAN over Bluetooth LE Gateway with OpenSYDE support

This device is an advanced **gateway** that bridges the communication between **Controller Area Network (CAN)** systems and Bluetooth Low Energy (LE) devices, enabling wireless communication and monitoring. It provides seamless integration of the **CAN bus** protocol with Bluetooth LE, allowing remote interaction with CAN networks without the need for a physical connection.

Supports 2 CAN Busses

The gateway can handle two **CAN busses**, making it highly flexible and scalable. The ability to manage two separate CAN busses is especially useful in systems that use multiple CAN networks (for example, in automotive or industrial applications where different subsystems might have their own dedicated CAN networks).

Monitoring and Producing CAN Messages

The gateway allows users to both monitor and produce CAN messages:

- Monitoring: It can capture CAN messages, letting users to monitor the real-time communication between ECUs (Electronic Control Units) over the CAN network and provide them for displaying on the mobile device screen. This is crucial for troubleshooting, diagnostics, and performance monitoring.
- Producing: The gateway can also generate and send CAN messages. This is useful for testing, simulation, or injecting specific data into the network to simulate different scenarios or control behavior in ECUs remotely.

Monitoring j1939 TP (Transport Protocol) Messages

j1939 is a higher-layer protocol built on top of the CAN bus, widely used in heavy-duty vehicles like trucks, buses, and construction machinery. The **j1939 Transport Protocol (TP)** allows large messages to be split into smaller chunks, sent over the CAN bus, and then reassembled.

This gateway can monitor **j1939 TP messages**, meaning it can capture and interpret these segmented messages, which are often critical in vehicle and industrial diagnostics. Monitoring j1939 TP messages helps engineers track and debug the transmission of large data payloads across the network, ensuring the communication is functioning as expected.

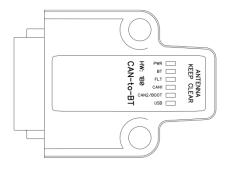
Identifying and Flashing OpenSYDE ECUs

OpenSYDE is an open-source, integrated development toolchain from STW designed for designing, developing, and managing control systems for mobile machines

The gateway has the capability to **identify** ECUs that are part of the OpenSYDE ecosystem and **flash** (update) their firmware over the air via Bluetooth LE. This is a powerful feature for remote ECU maintenance or software updates. It saves time and effort by eliminating the need to physically connect to each ECU for firmware upgrades, and it can be done without interrupting other communications on the CAN network.

1. Hardware 1B0

1.1. Electrical Characteristics


	Parameter	Value	Unit
Vin Power Supply Voltage		9 24 (42 max)	VDC

1.2. Connection

Mating Connector Type: Deutsch DT06-12S

Pin						
Gnd	1	12	Vin			
CAN1-L	2	11	CAN1_H			
CAN2-L	3	10	CAN2-H			
USB-Gnd	4	9	USB-ID			
USB-Shield	5	8	USB-Vbus			
USB-D-	6	7	USB-D+			

1.3. Indication

LED	Colour	Description		
PWR	Green	On Device is powered		
BT	Dlug	Flashing Bluetooth in Advertising mode		
ы	Blue	On Bluetooth is connected		
FLT	Red	Flashing Fault condition occurred		
FLI	Red	On		
CAN1	Green	Flashing CAN1 interface is active and communicates		
		Elaching CAN2 interface is active and communicates		
	_	Flashing CAN2 interface is active and communicates		
CAN2/Boot	Green	On When connected through USB indicates that		
the G		the Gateway is in the bootloader mode		
USB	Orange	Flashing USB interface is connected and communicates		

2. Bluetooth

2.1. Specification

Bluetooth LE 5.1

2.2. Advertising

1 ************** - the Gateway serial number

Advertised Service: 8031ffff-15a7-4d77-af22-c2926b4b2eef

2.3. GATT Server

2.3.1. Device Information Service (DIS)

Bluetooth SIG service

2.3.2. Hardware Configuration and Status Service

UUID: 8031**0100**-15a7-4d77-af22-c2926b4b2eef

2.3.2.1. CAN Bus Interface Characteristics:

2.3.2.1.1. CANx BUS Speed (bit/s)

UUIDs:

CAN Bus Interface	Characteristic	UUID
1	CAN1 BUS Speed	8031 0110 -15a7-4d77-af22-c2926b4b2eef
2	CAN2 BUS Speed	8031 0118 -15a7-4d77-af22-c2926b4b2eef

Direct Read/Write:

Size: 3 bytes

Format: Unsigned Integer

 Byte:
 0
 1
 2

 Value:
 MSB
 LSB

Automatic Speed Detection:

Size: 1 byte

Format: Unsigned Integer

Туре	Description	Supported Values ²	Default Value		
		1000000			
5 .		800000			
Read		500000			
		250000			
		125000			
		50000			
,,, ., 1	CAN Bus Speed	20000	250000		
Write ¹	CAN bus speed	10000	250000		
		0 – Start detection ³			
		1 – Abort detection ³			
		0 – Detection in progress			
Notify ³		Bit-Rate value – detection			
NOTITY		complete			

Writing any value other than supported will be ignored and result in an error response

² List of all supported values can be received by reading **List of supported CAN BUS Speeds** characteristic. Check section 2.3.2.1.4 for details.

³ Valid only in automatic detection mode. Refer to the section 2.3.2.2 for details

2.3.2.1.2. CANx BUS Interface State

UUIDs:

CAN Bus Interface	Characteristic	UUID
1	CAN1 BUS Speed	8031 0111 -15a7-4d77-af22-c2926b4b2eef
2	CAN2 BUS Speed	8031 0119 -15a7-4d77-af22-c2926b4b2eef

Size: 1 byte Format: Integer

Properties:

Туре	Description	Supported Values	Default Value
		0 – Error Active	
		1 – Error Warning	
Read	CAN Bus Interface State	2 – Error Passive	4
		3 – Bus-Off	
		4 – Stopped	

2.3.2.1.3. Active CAN BUS Interface

UUID: 8031**0120**-15a7-4d77-af22-c2926b4b2eef

Size: 1 byte Format: Integer

Properties:

opc. aco.			
Type	Description	Supported Values	Default Value
Read	Active CAN DUC Interfere ID	0 – None	0
Write ¹	Active CAN BUS Interface ID	1 – CAN1 2 – CAN2	U

¹ Writing any value other than the specified will be ignored and result in an error response

2.3.2.1.4. List of supported CAN BUS Speeds (bit/s)

UUID: 8031**0121**-15a7-4d77-af22-c2926b4b2eef

Size: 3*n bytes, where n is the number of values in a list

Format: Byte Array

Byte: Value:

0	1	2	3	4	5	3*(n-1)+0	3*(n-1)+1	3*(n-1)+2
	Value 1		Value 2		 Value n			
MSB		LSB	MSB		LSB	MSB		LSB

Туре	Description	Values
Read	Supported CAN BUS Speeds	See format section above

2.3.2.2. Description

The Gateway has two CAN2.0 bus interfaces, which can be individually configured. However, only one interface can be active at a time¹. The supported bit-rate values for each interface can be accessed via reading the **List of supported CAN BUS Speeds** characteristic. These values can then be written to the **CANx BUS Speed** characteristic to set the speed of the corresponding interface at any time.

Additionally, the Gateway can automatically detect the bus bit-rate when both interfaces are inactive (the **Active CAN BUS Interface** characteristic being set to 0).

To automatically detect the bus bitrate:

- Write byte value 0 into CANx BUS Speed characteristic of the corresponding interface
- If the write operation is successful, the notification with byte value 0 will be sent indicating that the process started
- If detection is successful the new value will be stored into characteristic and the notification with the new value will be sent. Otherwise the bit-rate value will not change.

The operation can be aborted by writing a byte value of 1 to the **CANx BUS Speed** characteristic of the corresponding interface, in which case the bitrate value will remain unchanged.

¹ We anticipate supporting bothbusses simultaneously in the future

2.3.2.3. Sensors Characteristics:

2.3.2.3.1. Supply Voltage (mV)

UUID: 8031**0180**-15a7-4d77-af22-c2926b4b2eef

Size: 2 bytes Format: Integer

 Byte:
 0
 1

 Value:
 MSB
 LSB

Properties:

Туре	Description	Values	
Read	Supply Voltage	Vin < -2.0V -2.0V ≤ Vin ≤ 32.5V Vin > 32.5V	0xF000 (under-voltage) -200032500 mV 0xF001 (over-voltage) 0xF00F (hardware fault)

2.3.2.3.2. Internal Temperature (°C)

UUID: 8031**0181**-15a7-4d77-af22-c2926b4b2eef

Size: 2 bytes

Format: Integer (0.01°C/Bit)

 Byte:
 0
 1

 Value:
 MSB
 LSB

Type	Description	Values
Read	Internal Temperature	-50.0°C 200°C

2.3.3. ECU Information Service

UUID: 8031**0200**-15a7-4d77-af22-c2926b4b2eef

2.3.3.1. Characteristics:

2.3.3.1.1. Control/Status

UUID: 8031**0201**-15a7-4d77-af22-c2926b4b2eef

Size: 1 byte Format: Integer

Properties:

Туре	Description	Supported Values	Default Value
Read	Sonvice status	Soo Table 1	
Notify	Service status	See Table 1	-1
Write ¹	Request Information	0 – Submit request	-1
vviite	Request information	1 – Reset ECU	

¹ Writing any value other than the specified will be ignored and result in an error response

Reading this characteristic returns the current status of the service.

It also can report the status of the request upon its completion by sending a notification. Writing \boldsymbol{o} to this characteristic:

- will be ignored and will cause an error response if service is busy
- otherwise, will initiate a new request to the ECU which node id is specified in the ECU Node Identifier characteristic

Writing 1 to this characteristic will initiate a reset request to the ECU

2.3.3.1.2. ECU Node Identifier

UUID: 8031**0202**-15a7-4d77-af22-c2926b4b2eef

Size: 1 byte

Format: Unsigned Integer

Properties:

Type	Description	Supported Values	Default Value
Read	Nada Idantifiar	0. 126	0
Write ^{2,3}	Node Identifier	0126	U

² Writing any value outside of the specified range will be ignored and result in an error response

The node ID of the ECU for which device information is requested.

³ Writing to this characteristic will be ignored and will result in an error response if the unit is busy

2.3.3.1.3. ECU Serial Number

UUID: 8031**0203**-15a7-4d77-af22-c2926b4b2eef

Size: 6 bytes
Format: Byte Array

Properties:

Type	Description	Supported Values	Default Value
Read	Serial Number		No Data

The value is updated after the request is processed

2.3.3.1.4. ECU Name

UUID: 8031**0204**-15a7-4d77-af22-c2926b4b2eef

Size: max 17 bytes

Format: Text

Properties:

Type	Description	Supported Values	Default Value
Read	Name		No Data

The value is updated after the request is processed

2.3.3.1.5. ECU Supplier HW number (Article Number)

UUID: 8031**0205**-15a7-4d77-af22-c2926b4b2eef

Size: 4 bytes

Format: Unsigned Integer

 Byte:
 0
 1
 2
 3

 Value:
 MSB
 LSB

Properties:

Туре	Description	Supported Values	Default Value
Read	Supplier HW number (Article Number)		No Data

The value is updated after the request is processed

2.3.3.1.6. ECU Supplier HW version (Article Version)

UUID: 8031**0206**-15a7-4d77-af22-c2926b4b2eef

Size: 2 bytes
Format: Char Array

Properties:

Туре	Description	Supported Values	Default Value
Read	Supplier HW version (Article Version)		No Data

The value is updated after the request is processed

2.3.3.1.7. Protocol Version

UUID: 8031**0207**-15a7-4d77-af22-c2926b4b2eef

Size: 3 bytes
Format: Byte Array

Byte: 0 1 2
Value: Major Minor Patch

Properties:

Type	Description	Supported Values	Default Value
Read	Protocol Version		No Data

The value is updated after the request is processed

2.3.3.1.8. Flashloader software version

UUID: 8031**0208**-15a7-4d77-af22-c2926b4b2eef

Size: 3 bytes
Format: Byte Array

Byte: 0 1 2
Value: Major Minor Patch

Properties:

Type	Description	Supported Values	Default Value
Read	Flashloader software version		N0 Data

The value is updated after the request is processed

2.3.3.1.9. Flashloader protocol version

UUID: 8031**0209**-15a7-4d77-af22-c2926b4b2eef

Size: 3 bytes
Format: Byte Array

Byte: 0 1 2
Value: Major Minor Patch

Properties:

Туре	Description	Supported Values	Default Value
Read	Flashloader software version		No Data

The value is updated after the request is processed

2.3.3.1.10. Flash count

UUID: 8031**020a**-15a7-4d77-af22-c2926b4b2eef

Size: 4 bytes

Format: Unsigned Integer

 Byte:
 0
 1
 2
 3

 Value:
 MSB
 LSB

Properties:

Type	Description	Supported Values	Default Value
Read	Flash count		No Data

The value is updated after the request is processed

2.3.3.2. Description

This service is used to identify ECUs connected to the CAN bus. It retrieves the device information from the ECU with ID specified in the ECU Node Identifier characteristic. The request is initiated by writing oto the Control/Status characteristic. If the target ECU is online and responds to the request the received values are accessible by reading the corresponding characteristics. If the ECU is offline or is not openSYDE compatible the information characteristics return *No Data*. While the request is in progress the status characteristic returns *Busy* value. After request has been completed the status changes to *Good*, *Flash Loader Activation Fault* or *Device Info Access Fault* depending on the result. The notification with the updated status can also be sent to the client.

2.3.4. ECU Programming Initialization Service

UUID: 8031**0210**-15a7-4d77-af22-c2926b4b2eef

2.3.4.1. Characteristics:

2.3.4.1.1. Control/Status

UUID: 8031**0211**-15a7-4d77-af22-c2926b4b2eef

Size: 1 byte Format: Integer

Properties:

Туре	Description	Supported Values	Default Value
Read	Service status	See Table 1	
Notify	Service status	See Table 1	-1
Write ¹	Cubmit information	0 – Submit request	-1
vvrite	Submit information	1 – Reset ECU	

¹ Writing any value other than the specified will be ignored and result in an error response

Reading this characteristic returns the current status of the service.

It also can report the status of the request upon its completion by sending a notification. Writing \boldsymbol{o} to this characteristic:

- if service is busy it will be ignored and result in an error response
- otherwise, it submits information about the program area (size, address and time stamp, stored in the corresponding characteristics) to the ECU which Node ID is specified in the ECU Node Identifier characteristic

Writing 1 to this characteristic will initiate a reset request to the ECU

2.3.4.1.2. ECU Node Identifier

UUID: 8031**0212**-15a7-4d77-af22-c2926b4b2eef

Size: 1 byte

Format: Unsigned Integer

Properties:

Туре	Description	Supported Values	Default Value
Read	Nada Idantifiar	0. 136	0
Write ^{2,3,4}	Node Identifier	0126	U

² Writing any value outside of the specified range will be ignored and result in an error response

The node ID of the ECU to be programmed.

³ Writing to this characteristic will be ignored and will result in an error response if the unit is busy

⁴ Writing to this characteristic will reset the value of **Control/Status** characteristic to **Undefined**

2.3.4.1.3. Program Area Size

UUID: 8031**0213**-15a7-4d77-af22-c2926b4b2eef

Size: 4 bytes

Format: Unsigned Integer

 Byte:
 0
 1
 2
 3

 Value:
 MSB
 LSB

Properties:

Туре	Description	Supported Values	Default Value
Read Write ^{1,2,3}	The Program Area Size	04294967295	No Data

¹ Writing any value outside of the specified range will be ignored and result in an error response

The size of the program area data to be flashed to the ECU.

2.3.4.1.4. Program Area Address

UUID: 8031**0214**-15a7-4d77-af22-c2926b4b2eef

Size: 4 bytes

Format: Unsigned Integer

Byte:	0	1	2	3
Value:	MSB			LSB

Properties:

Туре	Description	Supported Values	Default Value
Read	The Drogram Area Address	0 4204067205	No Doto
Write ^{4,5,6}	The Program Area Address	04294967295	No Data

⁴ Writing any value outside of the specified range will be ignored and result in an error response

The address in the ECU memory area where the program data should be located.

² Writing to this characteristic will be ignored and will result in an error response if the unit is busy

³ Writing to this characteristic will reset the value of **Control/Status** characteristic to **Undefined**

⁵ Writing to this characteristic will be ignored and will result in an error response if the unit is busy

⁶ Writing to this characteristic will reset the value of **Control/Status** characteristic to **Undefined**

2.3.4.1.5. Program Time Stamp

UUID: 8031**0215**-15a7-4d77-af22-c2926b4b2eef

Size: 6 bytes
Format: Byte Array

Byte:	0	1	2	3	4	5
Value	Year	Month	Day	Hour	Minute	Second
Value:	099	112	131	023	059	059

Properties:

Туре	Description	Supported Values	Default Value
Read	The Drogram Time Stamp	See format section	No Data
Write ^{1,2,3}	The Program Time Stamp	above	No Data

¹ If the value of any field is outside of its specified range the writing will be ignored and result in an error response

2.3.4.2. Description

This service attempts to activate programming mode on the target ECU, which is identified by the node ID in the ECU Node Identifier characteristic. All of the following characteristics — ECU Node Identifier, Program Area Size, Program Area Address, and Program Time Stamp — must be written prior to submitting the request, in any order. The request is initiated by writing 0 to the Control/Status characteristic. While the request is in progress the status characteristic returns 00 to the Control/Status characteristic. While the request is in progress the status characteristic returns 00 to the Control/Status characteristic. While the request is in progress the status characteristic returns 00 to 00 to

Successfully switching the ECU into programming mode initializes the **ECU Program Flashing Service** allowing transfer of the program to the ECU.

² Writing to this characteristic will be ignored and will result in an error response if the unit is busy

³ Writing to this characteristic will reset the value of **Control/Status** characteristic to **Undefined**

2.3.5. ECU Program Flashing Service

UUID: 8031**0220**-15a7-4d77-af22-c2926b4b2eef

2.3.5.1. Characteristics:

2.3.5.1.1. Control/Status

UUID: 8031**0221**-15a7-4d77-af22-c2926b4b2eef

Size: 1 byte Format: Integer

Properties:

Туре	Description	Supported Values	Default Value
Read	Service status	See Table 1	
Notify	Service status	See Table 1	-1
VA/mit o 1	Cultural time for manageria in	0 – Submit request	-1
Write ¹	Submit information	1 – Reset ECU	

¹ Writing any value other than the specified will be ignored and result in an error response

Reading this characteristic returns the current status of the service.

It also can report the status of the request upon its completion by sending a notification. Writing \boldsymbol{o} to this characteristic:

- will be ignored and will cause an error response if service is busy
- otherwise, it transmits data packet stored in Packet Data characteristic to the ECU

Writing 1 to this characteristic will initiate a reset request to the ECU

2.3.5.1.2. Packet Sequence Number

UUID: 8031**0222**-15a7-4d77-af22-c2926b4b2eef

Size: 2 bytes

Format: Unsigned Integer

 Byte:
 0
 1

 Value:
 MSB
 LSB

Properties:

Type	Description	Supported Values	Default Value
Read	Packet Sequence Number	065535	0

The packet number that the service is expecting from the client. This characteristic is read-only. It automatically increments after the packet is successfully received which means that the checksum from **Packet Checksum** matches the calculated one. If transmission is unsuccessful this value remains the same and the packet needs to be retransmitted.

2.3.5.1.3. Packet Checksum

UUID: 8031**0223**-15a7-4d77-af22-c2926b4b2eef

Size: 2 bytes

Format: Unsigned Integer

 Byte:
 0
 1

 Value:
 MSB
 LSB

Properties:

Туре	Description	Supported Values
Write ¹	The Packet Checksum	065535

¹ Writing any value outside of the specified range will be ignored and result in an error response

The packet checksum is calculated using the 16 bit version of Fletcher's algorithm. Check out https://en.wikipedia.org/wiki/Fletcher's checksum website for more information.

2.3.5.1.4. Packet Data

UUID: 8031**0224**-15a7-4d77-af22-c2926b4b2eef

Size: 1...500 bytes
Format: Byte Array

Properties:

Туре	Description	Supported Values
Write	The Packet Data	

The segment of program data.

2.3.5.2. Description

This service provides the functionality for transferring the program code to the ECU.

After successfully switching ECU into the programming mode the Packet Sequence Number will be reset to 0. The data is sent in packets of up to 500 bytes. The packet preparation involves writing payload data into Packet Data characteristic and the data checksum in the Packet Checksum characteristic in any order. The packet transmission is initiated by writing o to the Control/Status characteristic. While the request is in progress the status characteristic returns o value. If the transmission completed successfully the Packet Sequence Counter increments and the status is changed to o Otherwise, the Packet Sequence Counter remains the same and the status returns the possible reason of the fault. The status remains valid only while all the other characteristics retain the values used during transmission. If any of characteristic is changed the status will change to o Undefined. If the Packet Sequence Counter reaches its maximum possible value of 65535 it will roll over to 0 at the next increment.

Status codes:

Undefined Current set of values is not processed

Good The transmission completed successfully

Checksum Error A discrepancy between the **Packet Checksum** characteristic value and the

data checksum detected

When all program code is transferred to the ECU (the number of transferred bytes is equal to the value of **Program Size** characteristic) the ECU resets and the status returns **Transaction Complete** value.

2.3.6. ECU Flash Block Info Service

UUID: 8031**0230**-15a7-4d77-af22-c2926b4b2eef

2.3.6.1. Characteristics:

2.3.6.1.1. Control/Status

UUID: 8031**0231**-15a7-4d77-af22-c2926b4b2eef

Size: 1 byte Format: Integer

Properties:

Туре	Description	Supported Values	Default Value
Read	Service status	See Table 1	
Notify	Service status	See Table 1	-1
\\\\-:+- ¹	Cubacit information	0 (Submit request)	-1
Write ¹	Submit information	1 (Reset ECU)	

¹ Writing any value other than the specified will be ignored and result in an error response

Reading this characteristic returns the current status of the service.

It also can report the status of the request upon its completion by sending a notification. Writing \boldsymbol{o} to this characteristic:

- will be ignored and will cause an error response if service is busy
- will initiate a new request to the ECU which node id is specified in the ECU Node
 Identifier characteristic

Writing 1 to this characteristic will initiate a reset request to the ECU

2.3.6.1.2. ECU Node Identifier

UUID: 8031**0232**-15a7-4d77-af22-c2926b4b2eef

Size: 1 byte

Format: Unsigned Integer

Properties:

Туре	Description	Supported Values	Default Value
Read	Node Identifier	0 126	0
Write ^{2,3}	Node identifier	0126	U

² Writing any value other than the specified will be ignored and result in an error response

The node ID of the ECU for which device information is requested.

³ Writing to this characteristic will be ignored and will result in an error response if the unit is busy

2.3.6.1.3. ECU Flash Block Identifier

UUID: 8031**0233**-15a7-4d77-af22-c2926b4b2eef

Size: 1 byte

Format: Unsigned Integer

Properties:

Туре	Description	Supported Values	Default Value
Read	Flash Block Identifier	0 355	No Doto
Write ¹	Flash Block identifier	0255	No Data

¹ Writing any value other than the specified will be ignored and result in an error response

The ID of the ECU Flash Block for which the information is being required.

2.3.6.1.4. ECU Flash Block Start Address

UUID: 8031**0234**-15a7-4d77-af22-c2926b4b2eef

Size: 4 bytes

Format: Unsigned Integer

 Byte:
 0
 1
 2
 3

 Value:
 MSB
 LSB

Properties:

Type	Description	Supported Values	Default Value
Read	The Flash Block Start Address	04294967295	No Data

The value is updated after the request is processed.

2.3.6.1.5. ECU Flash Block End Address

UUID: 8031**0235**-15a7-4d77-af22-c2926b4b2eef

Size: 4 bytes

Format: Unsigned Integer

 Byte:
 0
 1
 2
 3

 Value:
 MSB
 LSB

Properties:

Type	Description	Supported Values	Default Value
Read	The Flash Block End Address	04294967295	No Data

The value is updated after the request is processed.

2.3.6.1.6. ECU Flash Block Signature Valid

UUID: 8031**0236**-15a7-4d77-af22-c2926b4b2eef

Size: 1 byte

Format: Unsigned Integer

Properties:

I	Туре	Description	Supported Values	
	Read	The Flash Block Signature Valid flag	0 – Invalid 1 – Valid	No Data

The value is updated after the request is processed.

2.3.6.1.7. ECU Flash Block Application Version

UUID: 8031**0237**-15a7-4d77-af22-c2926b4b2eef

Size: max 16 bytes

Format: Text

Properties:

Type	Description	Supported Values	Default Value
Read	The Flash Block Application Version		No Data

The value is updated after the request is processed.

2.3.6.1.8. ECU Flash Block Application Build Date

UUID: 8031**0238**-15a7-4d77-af22-c2926b4b2eef

Size: 11 bytes

Format: Text (Mmm dd yyyy)

Properties:

Туре	Description	Supported Values	Default Value
Read	The Flash Block Application Build Date		No Data

The value is updated after the request is processed.

2.3.6.1.9. ECU Flash Block Application Build Time

UUID: 8031**0239**-15a7-4d77-af22-c2926b4b2eef

Size: 8 bytes

Format: Text (hh:mm:ss)

Properties:

	Type	Description	Supported Values	Default Value
I	Read	The Flash Block Application Build Time		No Data

The value is updated after the request is processed.

2.3.6.1.10. ECU Flash Block Application Name

UUID: 8031**023a**-15a7-4d77-af22-c2926b4b2eef

Size: max 32 bytes

Format: Text

Properties:

Type	Description	Supported Values	Default Value
Read	The Flash Block Application Name		No Data

The value is updated after the request is processed.

2.3.6.1.11. ECU Flash Block Additional Info

UUID: 8031**023b**-15a7-4d77-af22-c2926b4b2eef

Size: max 255 bytes
Format: Byte Array

Properties:

Туре	Description	Supported Values	Default Value
Read	The Flash Block Additional Info		No Data

The value is updated after the request is processed.

2.3.6.2. Description

This service allows access to information about the software currently present in the ECU Flash memory.

This information is organized in blocks. In order to access any block information, the ECU Node Identifier and Flash Block Identifier values must be provided followed by writing 0 to the Control/Status characteristic. If the request is completed successfully, the status characteristic will change to *Good*. Otherwise, it will indicate the possible reason for the fault.

To obtain information from all blocks, the request should be made for each block ID, beginning from 0. Once all blocks are read, the status characteristic will return *Flash Block ID Out of Range* value.

2.3.7. CAN Bus Monitor Service

UUID: 8031**0300**-15a7-4d77-af22-c2926b4b2eef

This service consists of number of similar sets of characteristics called Message boxes. Each Message Box is intended for processing a particular CAN identifier and has the following structure:

- Operation Mode
- Status
- Rx Filter
- Packet
- Frame Count

2.3.7.1. UUID assignment:

Message Box #	Characteristic	UUID
	Operation Mode	8031 0309 -15a7-4d77-af22-c2926b4b2eef
	Status	8031 030a -15a7-4d77-af22-c2926b4b2eef
1	Rx Filter	8031 030b -15a7-4d77-af22-c2926b4b2eef
	Packet	8031 030c -15a7-4d77-af22-c2926b4b2eef
	Frame Count	8031 030d -15a7-4d77-af22-c2926b4b2eef
	Operation Mode	8031 0311 -15a7-4d77-af22-c2926b4b2eef
	Status	8031 0312 -15a7-4d77-af22-c2926b4b2eef
2	Rx Filter	8031 0313 -15a7-4d77-af22-c2926b4b2eef
	Packet	8031 0314 -15a7-4d77-af22-c2926b4b2eef
	Frame Count	8031 0315 -15a7-4d77-af22-c2926b4b2eef
	Operation Mode	8031 0319 -15a7-4d77-af22-c2926b4b2eef
	Status	8031 031a -15a7-4d77-af22-c2926b4b2eef
3	Rx Filter	8031 031b -15a7-4d77-af22-c2926b4b2eef
	Packet	8031 031c -15a7-4d77-af22-c2926b4b2eef
	Frame Count	8031 031d -15a7-4d77-af22-c2926b4b2eef
	Operation Mode	8031 0321 -15a7-4d77-af22-c2926b4b2eef
	Status	8031 0322 -15a7-4d77-af22-c2926b4b2eef
4	Rx Filter	8031 0323 -15a7-4d77-af22-c2926b4b2eef
	Packet	8031 0324 -15a7-4d77-af22-c2926b4b2eef
	Frame Count	8031 0325 -15a7-4d77-af22-c2926b4b2eef

Note: Future releases are expected to increase the number of message boxes to 8. Additional functionality to be developed

2.3.7.2. Characteristics:

2.3.7.2.1. Message box Operation Mode

UUID: See section 2.3.7.1

Size: 1 byte
Format: Integer

Properties:

Туре	Description	Supported Values	Default Value
Read		0 – Inactive	
Write ¹	Operation Mode	1 – Send	0
		2 – Receive	

¹ Writing any value other than supported will be ignored and result in an error response

2.3.7.2.2. Message box Status

UUID: See section 2.3.7.1

Size: 1 byte Format: Integer

Type	Description	Supported Values	Default Value
Read	Status Value	TBD	0

2.3.7.2.3. Message box Rx Filter

UUID: See section 2.3.7.1

Sizes: 3 bytes (IDE flag = 0)

5 bytes (IDE flag = 1)

Format: Byte Array

Standard (11-bit) CAN identifier

Byte:					1	2					
				ID							
	Bit	7	6	5	4	3	2	1	0	MSB	LSB
Value:	Flag	IDE	RTR							0x00 0x0	

Extended (29-bit) CAN identifier

LACCITAC	4 (23 8	, \	-A14	iuc		ıcı							
Byte:		0										4	
				Fla	ıgs		ID						
	Bit	7	6	5	4	3	2	1	0	MSB		LSB	
Value:	Flag	IDE	RTR							0x00000000 0x1CFFFFFF			

Flag	Value						
וחר	0 – Standard ID						
IDE	1 – Extended ID						
RTR	0 – Data Frame						
KIK	1 - Remote Transmission Request						

This revision of software does not support filtering of Remote Transmission Request so setting RTR flag is ignored and it is always read as 0.

Properties:

Туре	Description	Supported Values	Default Value	
Read	Rx Filter	See format section	No Data	
Write	KX Filler	above	No Data	

This characteristic contains the CAN message ID filter which is used when the Message box is in the receiving mode. It supports Standard (11-bit) and Extended (29-bit) identifiers. The IDE flag (bit 7) specifies the type of identifier. The RTR flag (bit 6) selects between filtering Data Packets or Remote Transmission Requests.

2.3.7.2.4. Message box Packet

UUID: See section 2.3.7.1

Sizes: 8 ... 16 bytes (IDE flag = 0) depending on the data length

10 ... 18 bytes (IDE flag = 1) depending on the data length

Format: Byte Array

Standard (11-bit) CAN identifier

Byte:		0								1	2	3	4 11	12		15
	Flags						ID		Data Length	Data	Cycle	Time	(mS)			
	Bit	7	6	5	4	ო	2	1	0	MSB	LSB			MSB		LSB
Value:	Flag	IDE	RTR							0x0000 0x07FF		08	0 to 8 bytes	04294967295		

Extended (29-bit) CAN identifier

	•	,	_		-	_											
Byte:		0						1		4	5	6 13	14		17		
	Flags					ID			Data Length	Data	Cycle	Time	(mS)				
	Bit	7	6	5	4	3	2	1	0	MSB		LSB			MSB		LSB
Value:	Flag	IDE	RTR								0000 LCFFF		08	0 to 8 bytes	042	94967	7295

Flag	Value
IDF	0 – Standard ID
IDE	1 – Extended ID
DTD	0 – Data Frame
RTR	1 - Remote Transmission Request

This revision of software does not support filtering of Remote Transmission Request so setting RTR flag is ignored and it is always read as 0.

Туре	Description	Supported Values	Default Value		
	Send Mode:				
Read	Transmitting packet				
Read	Receive Mode:				
	Last Received packet				
	Send Mode:				
\A/wita	Transmitting packet	See format section	No Data		
Write	Receive Mode:	above	No Data		
	Not Allowed				
	Send Mode:				
NI-+:E.	Transmitting packet				
Notify	Receive Mode:				
	Last Received packet				

2.3.7.2.5. Frame Counter

UUID: See section 2.3.7.1

Read:

Size: 4 bytes

Format: Unsigned Integer

Byte:	0	1	2	3
Value:	MSB			LSB

Write:

Size: 1 byte

Format: Unsigned Integer

Properties:

Туре	Description	Supported Values	Default Value			
Read	The Frame Counter	04294967295	0			
Write ¹	The Frame Counter	0	U			

¹ Writing any value other than the specified will be ignored and result in an error response

The value of this characteristic increments with each transmission or reception of a message in the corresponding message box. It can be reset by writing a byte value 0.

2.3.7.3. Description

Each message box can be set to one of the following modes:

Inactive mode:

The message box is idle. The **Message box Rx Filter** and **Message box Packet** characteristics can be configured with initial values before switching to one of the active modes described below.

Send mode:

In order to select this mode, the **Message box Packet** characteristic must be initialized. The outgoing message will be based on the value of this characteristic. The "Cycle Time" field of the packet will be used as a message retransmission period. If this value is 0 the only one message will be transmitted and the **Operation Mode** characteristic will be switched to the *Inactive* mode. The **Frame Counter** will increment each time the message is sent. Also notification from the **Message box Packet** characteristic will be sent if the client device is subscribed.

Both Message box Rx Filter and Message box Packet characteristics may be updated without switching to the *Inactive* mode. The Message box Rx Filter characteristic value is ignored in this mode. If the Message box Packet characteristic is updated the new message will be scheduled for transmission at the next event.

Multiple message boxes can be configured to transmit the message with the identical CAN ID.

Receive mode:

In order to select this mode, the **Message Box Rx Filter** characteristic must be initialized. Multiple message boxes cannot be configured to receive messages with identical CAN IDs.

When a message matching the filter is received, it will be placed in the **Message Box Packet** characteristic, and a notification will be sent if the client device is subscribed. The **Frame Counter** will increment each time the message is sent.

Modifying the Message Box Rx Filter or Message box Packet characteristic is not permitted in this mode.

2.3.8.j1939 TP Monitor Service

UUID: 8031**0380**-15a7-4d77-af22-c2926b4b2eef

This service consists of number of similar sets of characteristics called Message boxes. The Message Box is designed for processing one specific CAN identifier and has the following structure:

- Operation Mode
- Control/Status
- Rx Filter Source Address
- Rx Filter Destination Address
- Rx Message Data

2.3.8.1. UUID assignment:

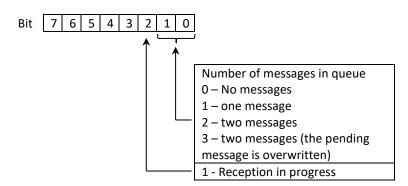
Message Box #	Characteristic	UUID				
	Operation Mode	8031 0389 -15a7-4d77-af22-c2926b4b2eef				
	Control/Status	8031 038a -15a7-4d77-af22-c2926b4b2eef				
1	Rx Filter - Source Address	8031 038b -15a7-4d77-af22-c2926b4b2eef				
	Rx Filter - Destination Address	8031 038c -15a7-4d77-af22-c2926b4b2eef				
	Rx Message Data	8031 038d -15a7-4d77-af22-c2926b4b2eef				

2.3.8.2. Characteristics:

2.3.8.2.1. Message box Operation Mode

UUID: See section 2.3.8.1

Size: 1 byte
Format: Integer


Type	Description	Supported Values	Default Value
Read	Operation Mode	0 – Inactive	0
Write ¹		2 – Receive	

¹ Writing any value other than supported will have no effect and will produce an error response

2.3.8.2.2. Message box Control/Status

UUID: See section 2.3.8.1

Size: 1 byte Format: Integer

Properties:

Type	Description	Supported Values	Default Value
Read		See format section above	
Write	Control Value	0 – Discard current message 1 – Reset current message fragment counter	0

2.3.8.2.3. Rx Filter - Source Address

UUID: See section 2.3.8.1

Size: 1 byte

Format: Unsigned Integer

Type	Description	Supported Values	Default Value
Read	Filter value for the Source		
Write ¹	Address of receiving j1939 TP	0255	0
	Message		

Writing to this characteristic will be ignored and will cause an error response if the unit is not in *Inactive* mode

2.3.8.2.4. Rx Filter - Destination Address

UUID: See section 2.3.8.1

Size: 1 byte

Format: Unsigned Integer

Properties:

Туре	Description	Supported Values	Default Value
Read	Filter value for the Destination		
Write ¹	Address of receiving j1939 TP	0255	255
VVIILE	Message		

Writing to this characteristic will be ignored and will cause an error response if the unit is not in *Inactive* mode

2.3.8.2.5. Rx Message Data

UUID: See section 2.3.8.1

Size: Varies depending on the fragment type and the data length. The maximum size is

258 bytes

Format: Byte Array

Fragment #0 (Header - Message Info)

			- /						
Byte:	0	1	2	3		6	7	8	9
Fragment #		Checksum ² Timestamp (mS)		Message Size (bytes)		Status			
Value:	rragment #	MSB	LSB	MSB		LSB	MSB	LSB	See table
	0	0x0000 .	0xFFFF	042	9496	7295	0x0000	0xFFFF	below

² Checksum is calculated over data block (bytes 3 ... fragment length) using 16 bit version of Fletcher's algorithm

Value	Status	Description
0	Good	Message received successfully
1	Out of sequence fault	Message reception was disrupted and its reassembly failed due to lost or corrupted data packet
2	Data size mismatch fault	Number of data bytes received differs from the number specified in the TP.CM
3	Timeout	Message reception was canceled because the consecutive frame was not received within 750ms.

Fragment #1...7 (Message Data)

Byte: 0 1 2 3 ... 258 (max)

Value: Tragment # MSB LSB Data

1...7 0x0000 ... 0xFFFF

Checksum is calculated over data block (bytes 3 ... fragment length) using 16 bit version of Fletcher's algorithm

Properties:

Type	Description	Supported Values	Default Value
Read	Active Message	See format section above	No Data

2.3.8.3. Description

This service provides the functionality for receiving of j1939 TP multi-packet messages.

In order to configure and activate a message box the following steps should be performed:

- Ensure that the message box is inactive (Operation Mode characteristic reads 0)
- Configure the receive filter by writing Source and Destination addresses values into corresponding characteristics

Switch Message Box to Receive Mode (write **2** into **Operation Mode** characteristic) to activate the message box

• Each received multi-packet message is added to the message queue, which can store the data of up to 2 messages (with the queue depth is 2).

The first received message becomes an *active* (available for reading from Message Data characteristic) and the message counter in the Control/Status characteristic increments from 0 to 1. If another message received while the first (active) message is not consumed it gets placed in a queue and becomes a *pending* message and the message counter in the Control/Status characteristic increments from 1 to 2. In case when another message is received while the queue is full (contains 2 messages) the *pending* message gets overwritten and the message counter in the Control/Status characteristic gets value 3.

Receive process

A reception session starts when the j1939 TP.CM packet with ID matching the message box filter values and with control byte (byte 0) containing BAM value is received. The j1939 priority of the received TP.CM packet is recorded for use in filtering of subsequent TP.DT packets. The *Reception in progress* flag (bit 3) in the **Control/Status** characteristic changes to 1 indicating reception in progress. The message box will continue receiving j1939 TP.DT packets until all the message packets/bytes are received. At a completion the *Reception in progress* flag (bit 3) in the **Control/Status** characteristic changes to 0 and the counter of the messages in the queue increments. If the queue is full the new message overwrites the pending message in the queue and the message counter gets value 3 indicating the fact. If, during reception session, the received j1939 TP.DT packet has an unexpected packet number (byte 0) the session aborts and the *Packet out of sequence fault* flag is set in the **Control/Status** characteristic.

Read Message

The earliest received (active) message can be retrieved by reading from the **Rx Message Data** characteristic. The message data is stored in series of fragments of a maximum size of 255 bytes. This format is used because the maximum length of the j1939 TP message exceeds the size limit of the BLE GATT characteristic. Each fragment consists of a sequence number, checksum and a data field.

There are 2 types of message fragments:

- Header Fragment. It provides information about the message such as timestamp and the length of the message data. It always has a sequence number 0.
- Data Fragments. These fragments provide the message data in a sequence of blocks. They have numbers from 1 to 7.

When a new message became active, the fragment number counter is set to 0. Each reading from a **Rx Message Data** characteristic causes fragment number incrementing by 1. When the last fragment is read the fragment sequence number resets to 0. This allows rereading the message in case of any issue. The fragment sequence counter could also be forced to reset to 0 by writing **1** into the **Control/Status** characteristic.

When all fragments are read and the whole message is reconstructed the active message can be discarded by writing **0** into the **Control/Status** characteristic. If there is a pending message in a queue it becomes active and available for reading. If there is no messages in the queue, reading from a **Rx Message Data** characteristic will return **No Data** value.

Table 1. Status Codes:

Code	Description
-1	Undefined
0	Busy
1	Good
2	Transaction Complete
3	ECU Inaccessible
4	Access Denied
5	Value Out of Range
6	No Active CAN Bus
7	Checksum Error
8	Flash Loader Activation Fault
9	Device Info Access Fault
10	Flash Download Request Fault
11	Flash Data Transfer Fault
12	Data Transfer Exit Fault
13	System Reset Fault
14	Flash Block ID Out of Range
15	Flash Block Info Access Fault
	TBD

3. Using the Gateway

Use DIS service to identify the connected Gateway revision and supported functionality.

This Gateway allows flashing one program area at a time. If the firmware file has multiple areas the flashing process needs to be repeated for each area.

3.1 ECU Flashing procedure (Gateway software rev. 1A0)

- Connect Gateway to the CAN bus. The **Power On** LED turns on, the **BT Status** LED starts flashing indicating that the Gateway is in the advertising mode
- On the client device look for and connect to the Bluetooth device with the attributes (name, service, etc.) specified in section 2.2
- After the Bluetooth connection is established the BT Status LED on Gateway stops flashing and turns on
- Configure target CAN bus Interface by writing the bit rate and activate it
- Write the target ECU Node ID
- Check the target ECU information if needed
- Submit the firmware area address, length and firmware timestamp to activate ECU program mode
- Start writing firmware area data using blocks of 500 bytes or smaller. The status of
 operation is returned through the write response code. If the data block is accepted the
 Gateway returns success status. Otherwise it returns the error response code and the data
 is ignored. In this case the block should be resent until it is accepted

335 Tank Street, Petrolia, ON, Canada

- Continue writing the data until all firmware area data is sent
- When all data is sent the ECU will restart automatically

4. Updating the firmware

The Gateway has a built-in recovery mode that allows recovering or updating the firmware via the USB port. To update the firmware, make sure you have the following:

- Terminal software utility such as AuTerm or mcumgr-client installed on your computer
- Deutsch-to-USB interface cable

4.1 Entering Recovery mode

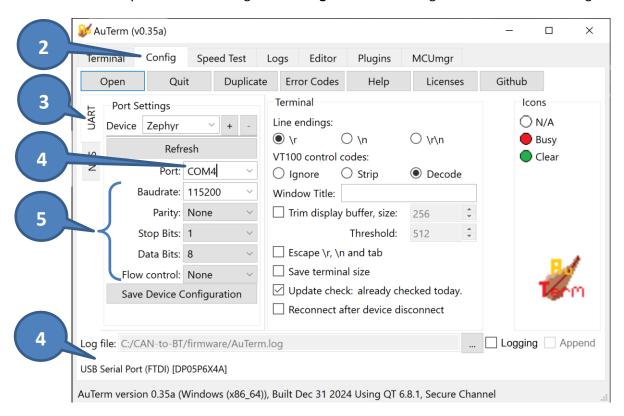
To activate recovery mode, disconnect the Gateway from the main power and connect it to a computer using the Deutsch-to-USB cable.

The new USB device named "CAN-to-BT boot" should appear in a list of devices.

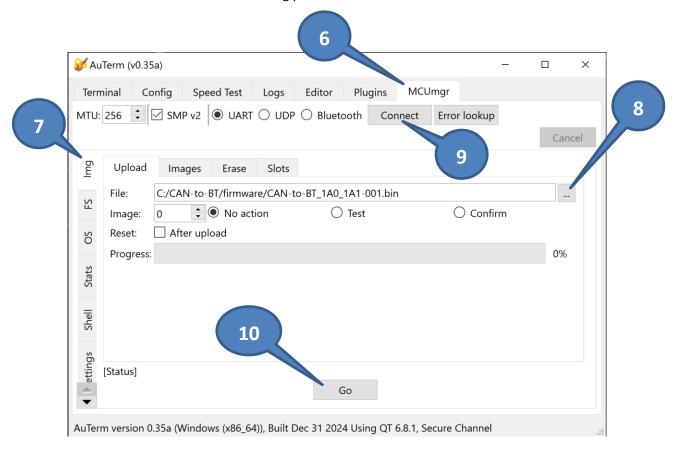
When the Gateway enters firmware recovery mode, the blue **BT** LED will stay off and green **CAN2/Boot** LED will turn on to indicate activation.

4.2 Flashing procedure

Prerequisites

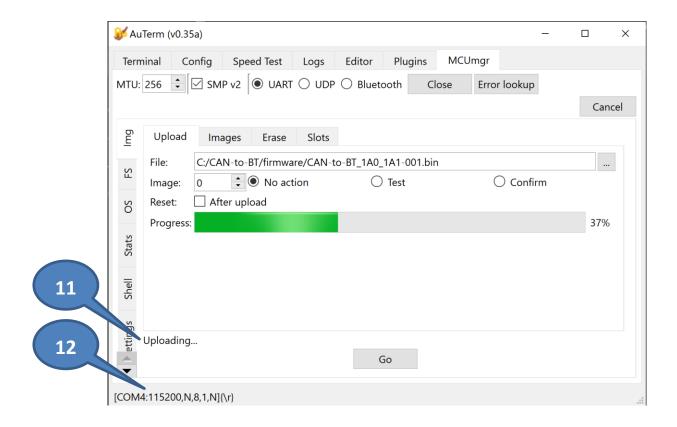

Correct firmware binary file is saved on the computer.
 The firmware file name follows the format:

firmware revision>_<firmware revision>.bin

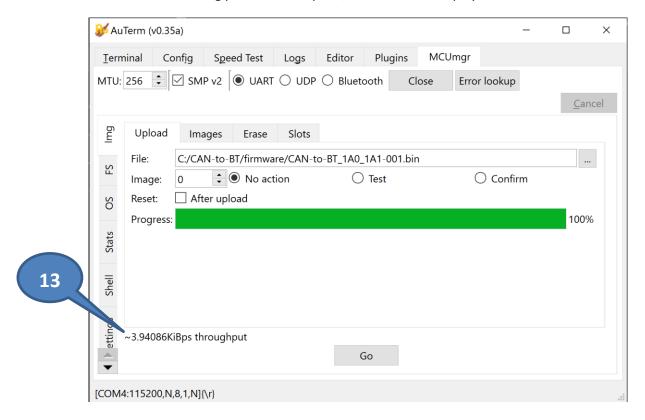

- The flashing software tool is installed
- The Gateway is switched to recovery mode, as described in section 4.1

4.2.1 Using AuTerm

- 1. Launch AuTerm application
- 2. Navigate to the Config tab
- 3. Ensure the **UART** Port tab is selected
- 4. In the Port Settings, select the COM port assigned to the Gateway (e.g., COM4). If the port is not shown in the drop down list, ensure that the Gateway is connected and in the Recovery mode, then press Refresh and check again. Once the correct port is selected, the Port Type should automatically update to "USB Serial Port (FTDI) [DP05P6X4]".
- 5. Verify that the remaining **Port Settings** match the configuration shown in the image below:



- 6. Navigate to the MCUmgr tab
- 7. Ensure the Img tab is selected
- 8. Select the firmware file to be uploaded
- 9. Click the **Connect** button to establish a connection with the Gateway
- 10. Press **Go** button to start flashing process



During the firmware update

- 11. The Status will change to "Uploading..."
- 12. The serial connection attributes will appear in a status bar

13. Once the flashing process is complete, the status will display the transmission rate

4.2.2 Using mcumgr-client (Windows)

- 1. Check the Assigned COM Port
 - Open Device Manager
 - Expand the Ports (COM & LPT) section
 - Note the COM port assigned to the Gateway (e.g., COM4)
- 2. Open Command Prompt
 - Press Win + R, type cmd, and press Enter to open the Command Prompt
- 3. Navigate to the Application Directory
 - Use the *cd* command to navigate to the folder where the flashing tool is located Example:

cd C:\Users\YourName\Downloads\FlasherTool

- 4. Run the Flashing Command
 - Execute the console application with the required arguments Example:

mcumgr-client.exe -d COM4 upload -s 0 CAN-to-BT_1A0_1A1-001.bin

typographical errors and is subject t	to change without notice.	
This document supersedes all previo		tain technical inaccuracies or
Note:		